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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

The binding energy of the alpha particle 4He 

A. F. OMOJOLA 
Department of Mathematics, Unirersity of Lagos, Lagos, Nigeria 
M S .  received 6th February 1970, in reuised form 15th September 1970 

Abstract. The problem of the alpha-particle S and D state binding energies 
is formulated in coordinate space and is followed by a variational calculation 
of the trial function (of the form (IS0 + 5DO)) contribution to the binding energy 
of the alpha particle (BE(4He)) using a radial wavefunction of the form 

5 

exp( - X 2 r f i 2 ) .  
1 > 1 = 2  

The calculation is based on the nuclear forces given by Omojola taking into 
account the effect of a ‘hard core’ on BE(4He). 

It is shown that, by fixing the value of the variation parameter of ISo to the 
well-established value from the high energy e-4He scattering and by using a 
repulsive core of suitable radius given by Hamada and Johnston, the excessive 
binding obtained with two-body central potentials may be reduced to reasonable 
values. The results obtained are compared with those of other authors. 

1. Introduction 
Many authors have described variational calculations of the binding energies of 

the triton and the alpha particle, using the phenomenological potential which satisfied 
current two-body data (Abraham et al. 1955, Irving 1951, 1952, 1953, Clark 1954, 
Kikuta et aZ. 1956, Blatt and Derrick 1958, Nagata e t  al. 1959, Kanada et  al. 1963, 
Irvine 1967, 1968, and Wong 1967). The  introduction of a ‘hard core’ into the two- 
body potential re-opens interest in further calculations of this kind. Several 
approaches have been made in the problems of three- and four-particle nuclei and in 
this paper we describe the direct variational calculations for the alpha particle. 

The  nuclear potentials of Hamada-Johnston (1962) which are used in this paper 
contain hard cores in all states of the interacting nucleons. The  radii of the cores are 
assumed to be the same and small (Y, N 0.485 fm). 

Brueckner (1958), discussing the hard core, shows that physically acceptable 
solutions of two-body problems can be obtained if the expression r Y ( ~ ) @ ( r )  behaves 
like a Dirac delta function for 0 < Y < Y,, where @(Y) is the two-body wavefunction 
and the hard-core potential V is infinite for 0 < Y < Y, (Y, is the core radius). 

Following the method of Brueckner applied to a two-body scattering problem, 
the Schrodinger equation involves an integral of the form 

/Y*( - ~ ) V ( Y ~ ~ ) Y (  - 1) dT-I. 

This integral has to be divided into two regions corresponding to 1 ~ ~ ~ 1  < Y, and 
IyI21 > Y, if we consider the hard cores of the potential. 

However, taking V(Y) N ( Y ~ - Y , ~ ) w ( Y )  in two attractive states and 
V(Y) N - ( y 2  + r , 2 ) ~ ( r )  in two nuclear repulsive states, where W ( Y )  is the ‘weight’ which 
is proportional to the probability of each configuration (related to binding energy), 
the calculation greatly simplies and this was adopted here. 

Work on the binding energies of 3H and 3He is almost complete and the results 
obtained will be reported in a future publication. 
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2. Forms of the nuclear potential 
The  nucleon-nucleon interaction is known to include both central and non- 

central forces. According to Rosenfeld (1948) and Okubo and Marshak (1958), the 
most general form of this interaction with the invariance and symmetry requirements 
must be a linear combination of the following terms: 

Qij = 3(( . L,j)( ~j . Lij) + ( ~ j  . Lij)( ~i Lij)}. (2.5) 

V( r I j )  is the radial function, si is the Pauli spin matrix vector for the ith particle 

Following the convention adopted by Omojola (1970) (to be referred to as 11) 
and ri and p ,  are its position and momentum vectors respectively. 

the interaction can now be written in full as 

eiei 
Vij = 2 2 ~ ( Z U  + 6,Bij + m,lWjj + h,Hij) "VA(rij, Q I ,  Q?) + - 

4 4  

(2.6) y . .  
i.=l v = 1  1 3  

where 

vVA(rij, q, aj) = 2 ALiiexp(-Aplri?) 

x P A J +  % 2 M  Qi + Q j )  

- ( Q i  * ~ j ) )  + 8i.,4{(Qi - Qi)Lij2 - Qij}l 

2 

k = l  

+ %3(3(a, * rijN c f j  ' r i i ) / y i i 2  

(2.7) 
ei is the electronic charge on the ith particle, Sill is the Kronecker delta having its 
usual meaning, X represents the Kth Gaussian term and takes the symbols C, LS, T 
and LL for the central, the linear spin-orbit, the tensor and the quadratic spin-orbit 
force respectively. v = 1, 2, 3 and 4 to represent the triplet even state, the triplet odd 
state, the singlet even state and the singlet odd state respectively. The interaction 
given above is taken to be in the units in which 

c = f i = l .  (2.8) 
The other parameters given in equations (2.6) and (2.7) are defined in 11. 

The  potential  ells V(r i j )  in this work are taken to be Gaussian forms whose 
parameters are determined by Omojola (1968) by least-square fits to the Hamada 
and Johnston potential (Hamada and Johnston 1962). Two Gaussian terms are used 
for each potential well so that one may represent the short-range contribution and 
the other the long-range one. The  numerical values of U k  and pk are given in 
table 2 (see Appendix 2). 



The binding energy of the alpha particle 4He 219 

3. The alpha-particle wavefunction 
The wavefunction of the 4He system is constructed so that it is antisymmetrical for 

interchange of the two neutrons and for the two protons respectively. The  ground 
state of 4He is of even parity, its spin is zero and has a total angular momentum 
J = 0. Thus, the possible values of L are 0, 1 and 2. The  possible states in operator 
form have been listed by Gerjuoy and Schwinger (1942), Irving (1953) and Abraham 
et al. (1955). The  ground state is a mixture of ISo, 3P0 and 5D0 states. Only the 
D state is directly coupled to the S state by the tensor force. Of the six D states listed 
by Gerjuoy and Schwinger only the principal D state (5D0) is completely symmetric 
in the space coordinate and this only is considered in this paper. The  principal 
P state will not be considered here for its contribution is quite negligible for a 
nuclear force of the type we are going to consider. Also, since the 3P0 state will 
appear only as a second approximation, it therefore follows that as a first approximation 
we can neglect the 3P0 state probability. 

As shown in 11, the wavefunction of the alpha particle can be written in the form 

where 

x is the spin wavefunction of the singlet state and is defined as 
l y N  

x(23, 45) = &(@3 -p2x3)(C14p5 -p4%5) x( - (3.4) 

2 , 3  denote the neutron and 4 and 5 the proton coordinates; g ,  and g D  represent the 
normalized spatial parts of the wavefunctions for the principal lS0 and 5D0 states 
respectively. pz, p3 and p4 are the three independent internal space coordinates. 

WD is defined by 
5 

WD = 2 Yij’Sij 
i > j = 2  

= 3(% ’ r23)(44 * r45)+3(G!2 * r45)(44 * r23) -2 (u2  ’ 44)(r23 ’ r43) (3*5) 

and c2 determines the amount of the D state in the mixture. We assume that both 
Y, and YD are normalized to unity, so that Y( - 1) is then normalized to unity. 

The  radial parts ’P, and YD are of the form 

g, = ivs exp (- 
ir j = 2  

and 

where ATs and ND are the normalization constants. The  radial parts are assigned 
different variation parameters, CI and p respectively. 
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The wavefunction of 4He is a function of the relative coordinates of the particles. 
The  following coordinates system of transformation is used : 

and 

p2 = r2-+(r3+r4+r5) 

p3 = r 3 - 3 ( r 4 i r 5 )  

P4 = r4 - rs. 

In  figure 1 particles 2 and 3 are neutrons and particles 4 and 5 are protons and 
r2,  r3 ,  re and r5 are the position vectors of the particles 2, 3 ,  4 and 5 respectively. 

4 p4 5 

Figure 1 

Using equations (3.6), (3.7) and (3.8), equations (3.2) and (3.3) can now be written as 

where W,, is defined by equation (3.5) with r23 = pz-$p3 and re5 = p4. The 
normalization coefficients Ns and ATD are given by 

and (3.10) 

4. The binding energy calculations 
4.1. The contribution of the energy and potential terms to BE(4He) 

energy inclusive of the D state is given by the following form: 
Let H be the complete Hamiltonian of the internal 4He system. Then the total 

E, = SY*( - 1)HY( - 1) d7-1 (4.1) 
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where the Hamiltonian is given by 

o2 is the Laplacian operator acting on the coordinate of the particle whose position 
vector is ria Y( - 1) and V i j  have already been defined in this paper. 

The Coulomb energy term of 4He is given by 
1 

ECoulomb = e2 ’I!*( - 1) -Y( - 1) d.i.-l. (4.3) J’ r45 
The contribution of the Coulomb term will be treated as a perturbation. The  

above expressions have to be minimized in the variational calculation of the binding 
energy which includes the principal D state. 

The  forms of the nuclear potential used in this paper are the same as those used 
in 11. The analysis of the contributions of the various interactions will be considered 
in Appendix 3. 
4.2. The contribution of the ‘hard core’ t o  BE(4He) 

We shall now consider the effect of the ‘hard core’ on BE(*He). Our method of 
approach will be similar to the method used for a two-body problem by Brueckner 
(1958). Since we want our potential to vanish at the core radius and also we want it 
to be infinitely repulsive inside the hard core, we shall assume that 

(D(r)rV(r)  +6(lr l  - re )  (4.4) 
where rc  is the core radius, @(r) is the spatial part of the mavefunction and Y is 
the distance between two particles. I t  therefore follows from equation (4.4) that the 
contribution of the potential term inside the core radius is zero. Hence the only 
contribution arises from the kinetic energy operator term and this will be considered 
fully in Appendix 3. 

When the effect of the hard core is taken into consideration, the limits of integra- 
tion become very complicated and thus care must be taken to see that the correct 
limits of integration are used. T o  avoid prohibitively complex mathematical analysis 
the contribution from the D-D terms will be neglected. 

The  kinetic energy operator is given by 
T2345 = T 2 - 3 4 5 f T 3 - 4 5 + T 4 6  

= (- &) [ g C 2 p 2 + # o ~ p P , + w p 4 ]  

on using equation (3.8). Thus 
(4.51 

The  evaluation of the above integrals will be dealt with in Appendix 3. 
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5. Final result for BE(4He) 
The total contribution of the kinetic energy, central, linear spin-orbit, tensor, 

quadratic spin-orbit and the Coulomb forces and the hard core effect to BE(4He) 
is given in the following form: 

m 

Ea = 1 T*( - 1)Hy( - 1) dT-l 
ro 
m I y*( - 1)HY."( - 1) dT-l - y?s*T2345ys d ~ - ~  (5.1) 
0 

that is 
f i 2  

2-44 
(1 + ?)Eu = - ( 1 8 ~  + 26pc2)K, 

where I represents the total contribution of the hard core to BE(4He). Equation (5 .2)  
represents the total contribution from the various interactions-indicated by the 
symbols attached. 

6. Results of the variational calculations of the binding energy of 4He 
BE(4He) is calculated from equation (5.2) using Hamada and Johnston potentials 

expressed in double Gaussians forms whose parameters are determined by Omojola. 
When equation (5.2) is minimized with respect to c(, ,8 and c, BE(4He) is found to 
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be - 58.457 MeV (cf. - 120 MeV obtained by Kanada et al.). When a is fixed to be 
0.140 fm-2 (as is well established from high energy e-4He scattering) the BE(4He) 
is found to be -26.038 MeV (cf. - 23.341 MeV and -33 MeV obtained by Kanada 
et al. and Nagata et al. respectively). Our results in detail are as follows. 

Table 1. BE(4He) 

Type State Coupled 
state 

Kinetic energy ss 
DD 

Coulomb energy ss 
DD 

Hard core (I) ss 
1VT ss 

Central 1V- ss 
3v+ ss 
3v- ss 

DD 

DD 

DD 

DD 

Spin-orbit 

Tensor 

Quadratic 
spin- 
orbit 

3v+ ss 
3 v -  ss 

DD 

DD 

3v+ SD 
DD 

3V- SD 
DD 

1V' ss 
lV- ss 
3VT ss 
3 v -  ss 

DD 

DD 

DD 

DD 

Total (Eor(min)) 

Contribution to 
BE(4He) (MeV) 

51.103 
2.907 

0.845 
0.016 

- 3 '875 

-47.348 
0.000 
0.000 
0~000 

-22.815 
-0.575 

0.000 
-0'065 

0.000 
-0,014 

0.000 
0,963 

-6.824 
0,060 
$0 *ooo 

-0.189 

0~000  
0.000 
0.000 
0~000 
o*ooo 
0.033 
0.000 
0.007 

-26.038 

c( = 0.140 fm-2, 13 = 0.262 fm-2  and c = 0.145 which give 
the minimum value of the BE(4He). IV-, lV-, 3V+ and 3V- 
represent the singlet even state, singlet odd state, triplet even 
state and triplet odd state respectively. 

7. Conclusions 
The BE(4He) is calculated by the Direct Search Method (Hooke and Jeeves 1961 

and Kaupe 1963) which is modified by the author to avoid any square root of a nega- 
tive argument during computation processes. The BE(4He) is found to be 
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-26.038 3leV when E, is minimized with respect to the parameters p and c as 
compared with the experimental value of -28.2 MeV. When c is fixed to be 0.2 
(assuming that there is exactly 4% D state in the mixture) the BE(4He) is found to 
be -57.432 MeV with x = 0.432 fm-2 and p = 0.473 fm-2. Sugie et al. (1957) 
obtained E,(min) as - 17.8 MeVwith K = 0.195 fm-2, ,l3 = 0,307 fm-2 and c = 0.19 
by a parabolic interpolation method. 

Irvine took into consideration the effect of a hard core on BE(4He) and obtained 
the following results without the contribution from the Coulomb force. He obtained 
- 12.80 MeV using the Reid-RIoszkowski-Scott interaction and - 14.80 MeV using 
the Siemen-Dahlblom interaction. We see that by using the value of the parameter 

determined from the high energy e-4He scattering and by using the value of the hard 
core radius of 0.485 fm we arrive at a reasonable value of the binding energy of 4He 
as compared with the empirical value and the values obtained by other authors. 

It should be pointed out that the inclusion of additional D state in the warefunction 
for 4He will definitely increase BE (4He) (Abraham et al. 1953) so that a value 
close to the experimental value of - 28.2 MeV may be obtained. An attempt is being 
made on this type of problem to see how the binding energy of 4He varies with the 
core radius. Also an attempt is being made to include the second most important 
D state in the calculation of this kind. Thus from the above results we conclude that 
BE(4He) may be calculated using a two-body interaction which accounts for the 
nucleon-nucleon scattering (up to 300 RIeV) and deuteron data. 
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Appendix 1 
In  the calculation of BE(4He) the following formulae are used : 

KJexp{-X(R-yr)2}dR = 1 

k ]  Rexp{-h(R-yr)2}dR = yr  

3 
2x 
15 5 

R2 exp{ - h(R - yr)2} dR = - + y2r2 .  

K R4exp{-h(R-yr)2}dR = - + - y 2 r 2 + y 4 r 4 .  i 4x2 h 
105 105 21 

k R6exp{-X(R-yr)2)dR = - A ---y2r2-i- - y4r4+y6y6 I 8h3 4x2 2h 
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k j ( R x A ) . ( R x B ) e x p { - h ( R - y r ) 2 ) d R  = y 2 ( r x A ) . ( r x B ) +  - ( A  1 . B )  x 

k 1 R 2 ( A  . R)(B . R )  exp{ -h(R - y ~ ) ~ }  dR 

= (g + y 2 r 2 ) y 2 ( A .  r ) ( B .  r ) +  - + y 2 r 2  - ( A . B )  G x  12: 
k f SI2(R2)  exp{-h(R - ~ r ) ~ }  dR = y2Sla(r2)  

( A  . R ) S , 2 ( R 2 ) e x p { - X ( R - y r ) 2 ) d R  = 

where 
3;2 

= 
and 

S12(A . B )  = S12(B. A) 
= 3( 01 . A ) (  02 . B )  - (01 . o ~ ) ( A  . B ) .  

Appendix 2 
The nuclear interaction 

The  numerical values of ALri and are given in table 2 below. 

Table 2 

h v U1 cL1 U2 Pz 

Central 1 - 57.301 0,781 -227.752 3.09 1 
2 -19.519 1.047 -45.081 2.860 
3 - 150,433 0.961 -1331 '301 3.569 
4 -9768 0.378 2171.754 4.094 

Spin- 1 8.720 0.956 38.279 3,351 
orbit 2 - 220659 1.826 - 1926.808 4.71 2 

Tensor 1 -72'680 0.848 -2230.868 3.149 
2 14.016 0.737 231.447 2,755 

Quadratic 1 36,934 1 620  673.374 4.909 
spin- 2 11.670 1.964 - 2332'307 9,035 
orbit 3 5.050 1.387 -61.792 4.380 

4 -129'299 2.032 -4459'021 5.751 

XU; are given in MeV and A , u i  in fm-2 .  Other constants used in this work are given 
below: 

M - = 0.241 x l oz6  cm-2  MeV-] 
?i* 

e'- = 1445 x cm MeV. 
and 

Appendix 3 

are given below. 
The  contributions of various interactions to the BE(4He) which occur in the text 
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3.1 Kinetic energy 

operator 
In  the system of coordinates given by equation (3.8), it is easily shown that the 

where v2p2, v2p3 and v2p4 act on the coordinates p2, p3 and p4 respectively. Thus 
contribution of the KE to BE(*He) is given by 

E K E  = -(;)I Y*(-1)($V2pz+ QV2p,+ $ V 2 p 4 ) Y ( - l ) d ~ - l  (A3.1) 

where 
dT-l = dp2 dp3 dp4. (A3.2) 

The  wavefunction given by equation (3.1) is now substituted in the expression (A3.1) 
for the KE and on using the intregration formulae given in Appendix 1 and the trans- 
formation already defined in this paper the above integral is simply evaluated and the 
result is given by 

3.2. Coulomb force 
The Coulomb force for the two protons is written in the following form: 

1 

y45 
Ecoul = e2 Iy'*( - 1) -Y( - 1) dp, dp, de4. 

This integral may be evaluated to give 

(A3.3) 

(A3.4) 

(A3.5) 

3.3. Hard core 
The total contribution of the hard core effect to the BE(4He) is given by 

x dp2 dB3 dP4. (A3.6) 
Limits of integration 

The limits of integration are: 
( i) 0 < l e z l  G rc  

(ii) 0 < I4 Tc 

(iii) 0 < IP41 G yc 

(iv) IPz-8P31 G y ,  

(v) lP212P4I G rc  1 
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and 

(vi) ~ P ~ + Q P ~ ~ . ; P ~ I  G ye. (A3.7) 

For the angular part of the integration we have the following limits: 

(vii) cos e34 i (yo2 - P32 -P42)/@3P4) 

(viii) cos O23 - P Z 2  -$P32)/($p2p3) 

and 

( is) cos e23 6 (y?-p22-&P32-~P4 2 )/(Bp2P3)* i 2  (-43.8) 

The integration with respect to p4 is performed over a solid angle. 
Equation (A3.6) can now be written as 

where 
-3  

4PzP3 

x1 = c0sez3 = - (yc2 - P22 - 4 9 P 3  2 )  

3 
x2 COS 623 = - (ye2 - ,122 - ips2 - 1 4 P 4 7  

'PZP3 

1 

P3P4 

1 
x4 = cos e34 = - (Y,2 - p 3 2  -p42). 

P3P4 

3i3 cos e,, = -~ -p32-P42) 

(A3.10) 

It can be shown that equation (A3.9) leads to 

+24ar,2[8{2ct~c2 - (1 - exp( - 3ar,2))) - 111 + 8arC2(5 + 28 esp( - 3urC2)) 
\ 1 it  

x exp( - ~ w , " ) ,  2/t 1 exp( - 2) dx + (( 1 - exp( - 2~,2)}[[(  112w,2 - 3 13) 
0 

1 x {l - exp( - 3arC2)} + 72ar,2] + 224arC2{1 - exp( - 3xrC2)) exp( - 2arC2) 

I x exp( - t )  

where 
t = $ U Y , 2 .  

(A.3 11) 

(A3.12) 
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3.4. Central force 
The contribution of the central force to the BE(4He) is given by 

( - l ) ~ d ~ - ~ ~ * ( - l ) Y * ( - l ) ( ~  (2345)Vi:, 
spin 

where 
4 

V t j  = (w+m,M,i+b,B,j+h,H,,}cV~(ij). 
,=l 

On substituting Y?( - 1) and carrying out the spin summations and then integrating 
over complete vectors, we arrive at the following results: 

3 .5  I Likear spiTa-orbit force 
The spin-orbit force gives no contribution in both the S-S and the S-D states 

to the BE(4He). Only the D-D state contributes to the BE(4He) and this only is 
considered in the present section. 

 EL^ j" < y D * l ~ L s l y D )  d7-1 

V,, = L . S(w + W Z - ~ Y I , , ) ~  Ls VL(ij) 
where 

and LsVl'i) has already been defined in this paper, 

ti a 
L , . S , ,  = - ( . , + . 3 ) . ( r , - r 3 ) ~ ( p I - p 3 )  and p ,  = - i h r .  

2 6 ri 

The final result of the contribution of the linear spin-orbit force to BE(4He) is 
given by 

3.6. The  tensor force 

We shall first of all consider the contribution from the S-D state. 
The tensor force contributes to the BE(4He) both in the S-D and the D-D states. 

(i) S-D state. The  total contribution from the S-D and D-S state is given by 

4 

v = 3  
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T v  pk 
r = 4P4-  P3 3(36 + "p l )  x = 36+Tp; t =  

T v  pk 86(26 + ' p i )  

= 86+3TpL 
E =  

6( 86 + 3 Tpi) 
w =  

36 + TP; 2(86 +3Tp;) 
and 

6 = (Cr+P)/2. 

Thus the above integral leads to 

Note that we have no contribution from S23 and S45. This is because each contains 
c2 or c4 only once and the expectation value of c2 or a4 between two similar spin 
functions is zero. 

(ii) D-D state. We now consider the contribution of the D-D state to BE(4He). 
This is given by the following expression: 

1 (yD*ITV;Slj(w+mMrr)vIy,) dT-l 

,2 2 4 1 

3.7. Quadratic spin-orbit force 
The S-S and the S-D contributions of the quadratic spin-orbit force to the 

BE(4He) can easily be shown to vanish. Thus, only the D-D terms contribute. 
Consider the following integral : 

' 1 ( ~ ~ ~ L L V k Y ~ L L ( i ~ ) ( ~ + m ~ ~ ~ j + b B , j + h ~ ~ j ) v I ~ D )  dT-1 

where Q L L  has already been defined in this paper. The  above integral is easily evalu- 
ated by making use of Appendix 1 and the final result is given by: 
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