The binding energy of the alpha particle ${ }^{4} \mathrm{He}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1971 J. Phys. A: Gen. Phys. 4217
(http://iopscience.iop.org/0022-3689/4/2/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.73
The article was downloaded on 02/06/2010 at 04:33

Please note that terms and conditions apply.

The binding energy of the alpha particle ${ }^{4} \mathrm{He}$

A. F. OMOJOLA
Department of Mathematics, University of Lagos, Lagos, Nigeria MS. received 6th February 1970, in revised form 15th September 1970

Abstract

The problem of the alpha-particle S and D state binding energies is formulated in coordinate space and is followed by a variational calculation of the trial function (of the form (${ }^{1} \mathrm{~S}_{0}+{ }^{5} \mathrm{D}_{0}$)) contribution to the binding energy of the alpha particle ($\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$) using a radial wavefunction of the form $$
\exp \left(-\lambda \sum_{i>j=2}^{5} r_{i j}^{2}\right)
$$

The calculation is based on the nuclear forces given by Omojola taking into account the effect of a 'hard core' on $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$.

It is shown that, by fixing the value of the variation parameter of ${ }^{2} \mathrm{~S}_{0}$ to the well-established value from the high energy $\mathrm{e}^{-4} \mathrm{He}$ scattering and by using a repulsive core of suitable radius given by Hamada and Johnston, the excessive binding obtained with two-body central potentials may be reduced to reasonable values. The results obtained are compared with those of other authors.

1. Introduction

Many authors have described variational calculations of the binding energies of the triton and the alpha particle, using the phenomenological potential which satisfied current two-body data (Abraham et al. 1955, Irving 1951, 1952, 1953, Clark 1954, Kikuta et al. 1956, Blatt and Derrick 1958, Nagata et al. 1959, Kanada et al. 1963, Irvine 1967, 1968, and Wong 1967). The introduction of a 'hard core' into the twobody potential re-opens interest in further calculations of this kind. Several approaches have been made in the problems of three- and four-particle nuclei and in this paper we describe the direct variational calculations for the alpha particle.

The nuclear potentials of Hamada-Johnston (1962) which are used in this paper contain hard cores in all states of the interacting nucleons. The radii of the cores are assumed to be the same and small ($r_{\mathrm{c}} \sim 0.485 \mathrm{fm}$).

Brueckner (1958), discussing the hard core, shows that physically acceptable solutions of two-body problems can be obtained if the expression $r V(r) \Phi(r)$ behaves like a Dirac delta function for $0<r<r_{\mathrm{c}}$, where $\Phi(r)$ is the two-body wavefunction and the hard-core potential V is infinite for $0<r<r_{\mathrm{c}}$ (r_{c} is the core radius).

Following the method of Brueckner applied to a two-body scattering problem, the Schrödinger equation involves an integral of the form

$$
\int \Psi^{* *}(-1) V\left(r_{12}\right) \Psi(-1) \mathrm{d} \tau_{-1}
$$

This integral has to be divided into two regions corresponding to $\left|r_{12}\right|<r_{\mathrm{c}}$ and $\left|r_{12}\right|>r_{0}$ if we consider the hard cores of the potential.

However, taking $V(r) \sim\left(r^{2}-r_{c}^{2}\right) w(r)$ in two attractive states and $V(r) \sim-\left(r^{2}+r_{c}^{2}\right) w(r)$ in two nuclear repulsive states, where $w(r)$ is the 'weight' which is proportional to the probability of each configuration (related to binding energy), the calculation greatly simplies and this was adopted here.

Work on the binding energies of ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ is almost complete and the results obtained will be reported in a future publication.

2. Forms of the nuclear potential

The nucleon-nucleon interaction is known to include both central and noncentral forces. According to Rosenfeld (1948) and Okubo and Marshak (1958), the most general form of this interaction with the invariance and symmetry requirements must be a linear combination of the following terms:
(i) The central exchange force
(ii) The linear spin-orbit force

$$
\begin{equation*}
S\left(\boldsymbol{r}_{i j}\right)=V\left(\boldsymbol{r}_{i j}\right)\left\{\left(\boldsymbol{s}_{i}+\boldsymbol{s}_{j}\right) \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \times\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right)\right\} \tag{2.1}
\end{equation*}
$$

(iii) The tensor force
and

$$
\begin{equation*}
T\left(\boldsymbol{r}_{i j}\right)=V\left(\boldsymbol{r}_{i j}\right)\left\{3\left(\boldsymbol{\sigma}_{i}, \boldsymbol{r}_{i j}\right)\left(\boldsymbol{\sigma}_{j}, \boldsymbol{r}_{i j}\right) / r_{i j}^{2}-\left(\boldsymbol{\sigma}_{i}, \sigma_{j}\right)\right\} \tag{2.2}
\end{equation*}
$$

(iv) The quadratic spin-orbit force
where

$$
\begin{equation*}
Q\left(\boldsymbol{r}_{i j}\right)=V\left(\boldsymbol{r}_{i j}\right)\left\{\left(\boldsymbol{\sigma}_{i} \cdot \sigma_{j}\right) \boldsymbol{L}_{i j}^{2}-Q_{i j}\right\} \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
L_{i j} & =\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \times\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right) \tag{2.4}\\
Q_{i j} & =\frac{1}{2}\left\{\left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{L}_{i j}\right)\left(\boldsymbol{\sigma}_{j} \cdot \boldsymbol{L}_{i j}\right)+\left(\boldsymbol{\sigma}_{j} \cdot L_{i j}\right)\left(\boldsymbol{\sigma}_{i}, \boldsymbol{L}_{i j}\right)\right\} \tag{2.5}
\end{align*}
$$

$V\left(r_{i j}\right)$ is the radial function, s_{i} is the Pauli spin matrix vector for the i th particle and \boldsymbol{r}_{i} and \boldsymbol{p}_{i} are its position and momentum vectors respectively.

Following the convention adopted by Omojola (1970) (to be referred to as II) the interaction can now be written in full as

$$
\begin{equation*}
V_{i j}=\sum_{\lambda=1}^{4} \sum_{v=1}^{4} \frac{1}{4}\left(w+b_{v} B_{i j}+m_{v} M_{i j}+h_{v} H_{i j}\right)^{v} V_{\lambda}\left(\boldsymbol{r}_{i j}, \sigma_{i}, \sigma_{j}\right)+\frac{e_{i} e_{j}}{r_{i j}} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{align*}
{ }^{v} V_{\lambda}\left(\boldsymbol{r}_{i j}, \boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j}\right)= & \sum_{k=1}^{2}{ }^{2} U_{k}^{v} \exp \left(-{ }^{\lambda} \mu_{k}^{v} r_{i j}{ }^{2}\right) \\
& \times\left[\delta_{\lambda, 1}+\delta_{\lambda, 2}\left\{\frac{1}{2}\left(\boldsymbol{\sigma}_{i}+\boldsymbol{\sigma}_{j}\right) \cdot \boldsymbol{L}_{i j}\right\}+\delta_{\lambda, 3}\left\{3\left(\boldsymbol{\sigma}_{i}, \boldsymbol{r}_{i j}\right)\left(\boldsymbol{\sigma}_{j}, \boldsymbol{r}_{i j}\right) / r_{i j}{ }^{2}\right.\right. \\
& \left.\left.-\left(\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{j}\right)\right\}+\delta_{\lambda, 4}\left\{\left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right) L_{i j}{ }^{2}-Q_{i j}\right]\right] \tag{2.7}
\end{align*}
$$

e_{i} is the electronic charge on the i th particle, $\delta_{i \lambda}{ }^{\prime}$ is the Kronecker delta having its usual meaning, λ represents the k th Gaussian term and takes the symbols C, LS, T and LL for the central, the linear spin-orbit, the tensor and the quadratic spin-orbit force respectively. $v=1,2,3$ and 4 to represent the triplet even state, the triplet odd state, the singlet even state and the singlet odd state respectively. The interaction given above is taken to be in the units in which

$$
\begin{equation*}
c=\hbar=1 . \tag{2.8}
\end{equation*}
$$

The other parameters given in equations (2.6) and (2.7) are defined in II.
The potential wells $V\left(\boldsymbol{r}_{i j}\right)$ in this work are taken to be Gaussian forms whose parameters are determined by Omojola (1968) by least-square fits to the Hamada and Johnston potential (Hamada and Johnston 1962). Two Gaussian terms are used for each potential well so that one may represent the short-range contribution and the other the long-range one. The numerical values of U_{k} and μ_{k} are given in table 2 (see Appendix 2).

3. The alpha-particle wavefunction

The wavefunction of the ${ }^{4} \mathrm{He}$ system is constructed so that it is antisymmetrical for interchange of the two neutrons and for the two protons respectively. The ground state of ${ }^{4} \mathrm{He}$ is of even parity, its spin is zero and has a total angular momentum $J=0$. Thus, the possible values of L are 0,1 and 2 . The possible states in operator form have been listed by Gerjuoy and Schwinger (1942), Irving (1953) and Abraham et al. (1955). The ground state is a mixture of ${ }^{1} \mathrm{~S}_{0},{ }^{3} \mathrm{P}_{0}$ and ${ }^{5} \mathrm{D}_{0}$ states. Only the D state is directly coupled to the S state by the tensor force. Of the six D states listed by Gerjuoy and Schwinger only the principal D state $\left({ }^{5} \mathrm{D}_{0}\right)$ is completely symmetric in the space coordinate and this only is considered in this paper. The principal \mathbf{P} state (${ }^{3} \mathrm{P}_{0}$) will not be considered here for its contribution is quite negligible for a nuclear force of the type we are going to consider. Also, since the ${ }^{3} \mathrm{P}_{0}$ state will appear only as a second approximation, it therefore follows that as a first approximation we can neglect the ${ }^{3} \mathrm{P}_{0}$ state probability.

As shown in II, the wavefunction of the alpha particle can be written in the form

$$
\begin{equation*}
\Psi(-1)=\frac{\left(\Psi_{\mathrm{S}}+c^{2} \Psi_{\mathrm{D}}\right)}{\left(1+c^{2}\right)^{1 / 2}} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \Psi_{\mathrm{S}}^{*}=g_{\mathrm{S}}\left(\rho_{2}, \rho_{3}, \rho_{4}\right) \chi \tag{3.2}\\
& \Psi_{\mathrm{D}}=g_{\mathrm{D}}\left(\rho_{2}, \rho_{3}, \rho_{4}\right) W_{\mathrm{D}} \chi \tag{3.3}
\end{align*}
$$

χ is the spin wavefunction of the singlet state and is defined as

$$
\begin{equation*}
\chi(\tilde{23}, \tilde{45})=\frac{1}{2}\left(\alpha_{2} \beta_{3}-\beta_{2} \alpha_{3}\right)\left(\alpha_{4} \beta_{5}-\beta_{4} \alpha_{5}\right) \equiv \chi(-1) \tag{3.4}
\end{equation*}
$$

2,3 denote the neutron and 4 and 5 the proton coordinates; g_{S} and g_{D} represent the normalized spatial parts of the wavefunctions for the principal ${ }^{1} \mathrm{~S}_{0}$ and ${ }^{5} \mathrm{D}_{0}$ states respectively. ρ_{2}, ρ_{3} and ρ_{4} are the three independent internal space coordinates.
W_{D} is defined by

$$
\begin{align*}
W_{\mathrm{D}} & =\sum_{i>j=2}^{5} r_{i j}^{2} s_{i j} \\
& =3\left(\sigma_{2}, r_{23}\right)\left(\sigma_{4} \cdot r_{45}\right)+3\left(\sigma_{2} \cdot r_{45}\right)\left(\sigma_{4} \cdot r_{23}\right)-2\left(\sigma_{2} \cdot \sigma_{4}\right)\left(r_{23} \cdot r_{45}\right) \tag{3.5}
\end{align*}
$$

and c^{2} determines the amount of the D state in the mixture. We assume that both Ψ_{S} and Ψ_{D} are normalized to unity, so that $\Psi(-1)$ is then normalized to unity.

The radial parts Ψ_{S} and Ψ_{D} are of the form

$$
\begin{equation*}
g_{\mathrm{S}}=N_{\mathrm{S}} \exp \left(-\frac{\alpha}{2} \sum_{i>j=2}^{5} r_{i j}^{2}\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{D}=N_{D} \exp \left(-\frac{\beta}{2} \sum_{i>j=2}^{5} r_{i j}^{2}\right) \tag{3.7}
\end{equation*}
$$

where N_{S} and N_{D} are the normalization constants. The radial parts are assigned different variation parameters, α and β respectively.

The wavefunction of ${ }^{4} \mathrm{He}$ is a function of the relative coordinates of the particles. The following coordinates system of transformation is used:
and

$$
\left.\begin{array}{l}
\rho_{2}=r_{2}-\frac{1}{3}\left(r_{3}+r_{4}+r_{5}\right) \tag{3.8}\\
\rho_{3}=r_{3}-\frac{1}{2}\left(r_{4}+r_{5}\right) \\
\rho_{4}=r_{4}-r_{5}
\end{array}\right\}
$$

In figure 1 particles 2 and 3 are neutrons and particles 4 and 5 are protons and $\boldsymbol{r}_{2}, \boldsymbol{r}_{3}, \boldsymbol{r}_{4}$ and \boldsymbol{r}_{5} are the position vectors of the particles $2,3,4$ and 5 respectively.

Figure 1
Using equations (3.6), (3.7) and (3.8), equations (3.2) and (3.3) can now be written as
and

$$
\Psi_{\mathrm{S}}=\frac{N_{\mathrm{S}}}{\left(1+c^{2}\right)^{1 / 2}} \exp \left\{-\frac{\alpha}{2}\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \chi(\tilde{23}, \tilde{45})
$$

$$
\begin{equation*}
\left.\Psi_{D}=\frac{c N_{D}}{\left(1+c^{2}\right)^{1 / 2}} \exp \left\{-\frac{\beta}{2}\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} W_{\mathrm{DX}}(\tilde{23}, \tilde{45})\right\} \tag{3.9}
\end{equation*}
$$

where W_{D} is defined by equation (3.5) with $r_{23}=\rho_{2}-\frac{2}{3} \rho_{3}$ and $r_{45}=\rho_{4}$. The normalization coefficients N_{S} and N_{D} are given by

$$
\left.\begin{array}{l}
N_{\mathrm{S}}^{2}=\left(\frac{16 \alpha^{3}}{\pi^{3}}\right)^{3 / 2} \tag{3.10}\\
N_{D}^{2}=\frac{4 \beta^{2}}{45}\left(\frac{16 \beta^{3}}{\pi^{3}}\right)^{3 / 2}
\end{array}\right\}
$$

4. The binding energy calculations

4.1. The contribution of the energy and potential terms to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$

Let H be the complete Hamiltonian of the internal ${ }^{4} \mathrm{He}$ system. Then the total energy inclusive of the D state is given by the following form:

$$
\begin{equation*}
E_{\alpha}=\int \Psi^{*}(-1) H \Psi^{(-1)} \mathrm{d} \tau_{-1} \tag{4.1}
\end{equation*}
$$

where the Hamiltonian is given by

$$
\begin{equation*}
H=\left(-\frac{\hbar^{2}}{2 M}\right) \sum_{j=2}^{5} \nabla_{j}^{2}+\sum_{i>j=2}^{5} V_{i j} \tag{4.2}
\end{equation*}
$$

∇^{2} is the Laplacian operator acting on the coordinate of the particle whose position vector is $\boldsymbol{r}_{i} . \Psi^{*}(-1)$ and $V_{i j}$ have already been defined in this paper.

The Coulomb energy term of ${ }^{4} \mathrm{He}$ is given by

$$
\begin{equation*}
E_{\text {Coulomb }}=e^{2} \int \Psi *(-1) \frac{1}{r_{45}} \Psi(-1) \mathrm{d} \tau_{-1} . \tag{4.3}
\end{equation*}
$$

The contribution of the Coulomb term will be treated as a perturbation. The above expressions have to be minimized in the variational calculation of the binding energy which includes the principal D state.

The forms of the nuclear potential used in this paper are the same as those used in II. The analysis of the contributions of the various interactions will be considered in Appendix 3.

4.2. The contribution of the 'hard core' to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$

We shall now consider the effect of the 'hard core' on $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$. Our method of approach will be similar to the method used for a two-body problem by Brueckner (1958). Since we want our potential to vanish at the core radius and also we want it to be infinitely repulsive inside the hard core, we shall assume that

$$
\begin{equation*}
\Phi(r) r V(r) \rightarrow \delta\left(|r|-r_{\mathrm{c}}\right) \tag{4.4}
\end{equation*}
$$

where r_{c} is the core radius, $\Phi(r)$ is the spatial part of the wavefunction and r is the distance between two particles. It therefore follows from equation (4.4) that the contribution of the potential term inside the core radius is zero. Hence the only contribution arises from the kinetic energy operator term and this will be considered fully in Appendix 3.

When the effect of the hard core is taken into consideration, the limits of integration become very complicated and thus care must be taken to see that the correct limits of integration are used. To avoid prohibitively complex mathematical analysis the contribution from the $\mathrm{D}-\mathrm{D}$ terms will be neglected.

The kinetic energy operator is given by

$$
\begin{align*}
T_{2345} & =T_{2-345}+T_{3-45}+T_{45} \\
& =\left(-\frac{\hbar^{2}}{2 M}\right)\left[\frac{4}{3} \nabla_{2-345}^{2}+\frac{3}{2} \nabla_{3-45}^{2}+\frac{2}{1} \nabla_{45}^{2}\right] \\
& =\left(-\frac{\hbar^{2}}{2 M}\right)\left[\frac{4}{3} \nabla^{2} \rho_{2}+\frac{3}{2} \nabla^{2} \rho_{3}+\frac{2}{1} \nabla^{2} \rho_{4}\right] \tag{4.5}
\end{align*}
$$

on using equation (3.8). Thus

$$
\begin{align*}
\left\langle{ }^{1} \mathrm{~S}_{0}{ }^{*} \mid T_{2345}{ }^{1} \mathrm{~S}_{0}\right\rangle= & -2 \alpha^{2} \frac{\hbar}{M} \frac{N_{\mathrm{s}}^{2}}{1+c^{2}} \iiint\left(-\frac{\partial}{\partial \alpha}\right) \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{\mathrm{o}}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \\
& \times \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4}+18 \alpha \frac{\hbar^{2}}{M} \frac{N_{\mathrm{s}}^{2}}{1+c^{2}} \\
& \times \iiint \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} . \tag{4.6}
\end{align*}
$$

The evaluation of the above integrals will be dealt with in Appendix 3.

5. Final result for $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$

The total contribution of the kinetic energy, central, linear spin-orbit, tensor, quadratic spin-orbit and the Coulomb forces and the hard core effect to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is given in the following form:

$$
\begin{align*}
E_{\alpha} & =\int_{r_{\mathrm{e}}}^{\infty} \Psi^{*} *(-1) H \Psi(-1) \mathrm{d} \tau_{-1} \\
& \equiv \int_{0}^{\infty} \Psi^{*} *(-1) H \Psi(-1) \mathrm{d} \tau_{-1}-\int_{0}^{r_{\mathrm{e}}} \Psi_{\mathrm{s}}^{*} * T_{2345} \Psi_{\mathrm{s}} \mathrm{~d} \tau_{-1} \tag{5.1}
\end{align*}
$$

that is
$\left(1+c^{2}\right) E_{\alpha}=\frac{\hbar^{2}}{2 M}\left(18 \alpha+26 \beta c^{2}\right)_{\mathrm{KE}}$
$+\sum_{k=1}^{2} \sum_{\nu=1}^{4}{ }^{\mathrm{C}} U_{k}^{\nu}\left[6(w+m)_{\nu}\left(\frac{2 \alpha}{2 \alpha+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{3 / 2}\right.$
$+c^{2}\left\{\frac{\tilde{\partial}}{2}(w+m+b+h)_{\nu}\left(\frac{2 \beta}{2 \beta+{ }^{{ }^{\mu}}{ }_{k}^{v}}\right)^{3 / 2}+3(w-m+b-h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{{ }^{\prime} \mu_{k}^{v}}}\right)^{5 / 2}\right.$
$\left.\left.+\frac{1}{2}(w+m+b+h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{7 / 2}\right\}\right]$
$-3 c^{2} \hbar^{2} \sum_{k=1}^{2} \sum_{\nu=3}^{4}{ }^{\mathrm{LS}} U_{k}^{v}\left(3(w-m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LS}} \mu_{k}^{v}}\right)^{5 / 2}\right.$
$\left.+(w+m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{L \mathbf{S}} \mu_{k}^{v}}\right)^{7 / 2}\right\}-\sum_{k=1}^{2} \sum_{v=3}^{4}{ }^{\mathrm{T}} U_{k}^{v}\left[6 \sqrt{ } 5 c(w+m)_{v}\right.$
$\times\left(\frac{2 \alpha}{\alpha+\beta}\right)\left(\frac{2 \beta}{\alpha+\beta}\right)^{2}\left(\frac{2(\alpha \beta)^{1 / 2}}{\alpha+\beta+{ }^{T} \mu_{k}^{v}}\right)^{5 / 2} \frac{1}{\alpha+\beta+{ }^{T} \mu_{k}^{v}}$
$+c^{2}\left\{\frac{2}{2} \frac{1}{2}(w-m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}}\right)^{5 / 2}+\frac{7}{2}(w+m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}}\right)^{7 / 2}\right\}$
$\left.\times \frac{1}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}}\right]+\frac{2}{3} c^{2} \hbar^{2} \sum_{k=1}^{2} \sum_{v=1}^{4}{ }^{\mathrm{LL}} U_{k}^{v}\left[2(w-m+b-h)_{v}\left(\frac{2 \beta}{2 \beta+\mathrm{IL}_{\mu v}^{v}}\right)^{5 / 2}\right.$
$\left.-9(w+m+b+h)_{\nu}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LL}} \mu_{k}^{v}}\right)^{7 / 2}\right]$
$\left.+\frac{2}{3} e^{2}\left[3\left(\frac{2 \alpha}{\pi}\right)^{1 / 2}+2 c^{2}\left(\frac{2 \beta}{\pi}\right)^{1 / 2}\right]_{\text {Coulomb }}-\left(1+c^{2}\right) I\right]$
where I represents the total contribution of the hard core to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$. Equation (5.2) represents the total contribution from the various interactions-indicated by the symbols attached.

6. Results of the variational calculations of the binding energy of ${ }^{4} \mathrm{He}$

$\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is calculated from equation (5.2) using Hamada and Johnston potentials expressed in double Gaussians forms whose parameters are determined by Omojola. When equation (5.2) is minimized with respect to α, β and $c, \mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is found to
be -58.457 MeV (cf. -120 MeV obtained by Kanada et al.). When α is fixed to be $0.140 \mathrm{fm}^{-2}$ (as is well established from high energy e- ${ }^{4} \mathrm{He}$ scattering) the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is found to be -26.038 MeV (cf. -23.341 MeV and -33 MeV obtained by Kanada et al. and Nagata et al. respectively). Our results in detail are as follows.

Table 1. $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$

Type	State	Coupled state	Contribution to BE $\left({ }^{4} \mathrm{He}\right.$) (MeV)
Kinetic energy		SS	51.103
		DD	$2 \cdot 907$
Coulomb energy		SS	0.845
		DD	0.016
Hard core (I)		SS	-3.875
Central	${ }^{1} V^{+}$	SS	-47.348
		DD	$0 \cdot 000$
	${ }^{1} V^{-}$	SS	$0 \cdot 000$
		DD	0.000
	${ }^{3} V^{+}$	SS	-22.815
		DD	-0.775
	${ }^{3} V^{-}$	SS	0.000
		DD	-0.065
Spin-orbit	${ }^{3} V^{+}$	SS	0.000
		DD	-0.014
	${ }^{8} V^{-}$	SS	$0 \cdot 000$
		DD	0.963
Tensor	${ }^{3} V^{+}$	SD	-6.824
		DD	0.060
	${ }^{3} V^{-}$	SD	-0.000
		DD	-0.189
Quadratic spinorbit	${ }^{1} V^{+}$	SS	0.000
		DD	0.000
	${ }^{1} V^{-}$	SS	0.000
		DD	0.000
	${ }^{3} V^{+}$	SS	0.000
		DD	0.033
	${ }^{3} V^{-}$	SS	0.000
		DD	0.007
Total ($E_{\alpha}(\min$) $)$			-26.038

$\alpha=0.140 \mathrm{fm}^{-2}, \beta=0.262 \mathrm{fm}^{-2}$ and $c=0.145$ which give the minimum value of the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right) .{ }^{1} V^{-},{ }^{1} V^{-},{ }^{3} V^{+}$and ${ }^{3} V^{-}$ represent the singlet even state, singlet odd state, triplet even state and triplet odd state respectively.

7. Conclusions

The $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is calculated by the Direct Search Method (Hooke and Jeeves 1961 and Kaupe 1963) which is modified by the author to avoid any square root of a negative argument during computation processes. The $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is found to be
-26.038 MeV when E_{α} is minimized with respect to the parameters β and c as compared with the experimental value of -28.2 MeV . When c is fixed to be 0.2 (assuming that there is exactly $4 \% \mathrm{D}$ state in the mixture) the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is found to be -57.432 MeV with $\alpha=0.432 \mathrm{fm}^{-2}$ and $\beta=0.473 \mathrm{fm}^{-2}$. Sugie et al. (1957) obtained $E_{\alpha}(\min)$ as -17.8 MeV with $\alpha=0.195 \mathrm{fm}^{-2}, \beta=0.307 \mathrm{fm}^{-2}$ and $c=0.19$ by a parabolic interpolation method.

Irvine took into consideration the effect of a hard core on $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ and obtained the following results without the contribution from the Coulomb force. He obtained -12.80 MeV using the Reid-Moszkowski-Scott interaction and -14.80 MeV using the Siemen-Dahlblom interaction. We see that by using the value of the parameter α determined from the high energy $\mathrm{e}^{-} \mathrm{H}^{4} \mathrm{scattering}$ and by using the value of the hard core radius of 0.485 fm we arrive at a reasonable value of the binding energy of ${ }^{4} \mathrm{He}$ as compared with the empirical value and the values obtained by other authors.

It should be pointed out that the inclusion of additional D state in the wavefunction for ${ }^{4} \mathrm{He}$ will definitely increase $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ (Abraham et al. 1955) so that a value close to the experimental value of -28.2 MeV may be obtained. An attempt is being made on this type of problem to see how the binding energy of ${ }^{4} \mathrm{He}$ varies with the core radius. Also an attempt is being made to include the second most important D state in the calculation of this kind. Thus from the above results we conclude that $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ may be calculated using a two-body interaction which accounts for the nucleon-nucleon scattering (up to 300 MeV) and deuteron data.

Acknowledgments

I wish to thank Dr S. Hochberg for suggesting the problem and for his constant encouragement and valuable guidance throughout this work. I am also greatly indebted to the Government of the Federal Republic of Nigeria for financial support and to the Director and staff of the University of London Atlas Computer Services for use of the Atlas Computer. Last but not least my wife 'Bolanle and my children for the patience they have had with me and my work during its preparation when I have not been able to take such an active part in the family life as I usually do.

Appendix 1

In the calculation of $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ the following formulae are used:

$$
\begin{aligned}
k \int \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} & =1 \\
k \int \boldsymbol{R} \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} & =\gamma \boldsymbol{r} \\
k \int R^{2} \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} & =\frac{3}{2 \lambda}+\gamma^{2} \boldsymbol{r}^{2} . \\
k \int R^{4} \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} & =\frac{15}{4 \lambda^{2}}+\frac{5}{\lambda} \gamma^{2} \boldsymbol{r}^{2}+\gamma^{4} \boldsymbol{r}^{4} . \\
k \int R^{6} \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} & =\frac{105}{8 \lambda^{3}}+\frac{105}{4 \lambda^{2}} \gamma^{2} \boldsymbol{r}^{2}+\frac{21}{2 \lambda} \gamma^{4} \boldsymbol{r}^{4}+\gamma^{6} \gamma^{6}
\end{aligned}
$$

$$
\begin{gathered}
k \int(\boldsymbol{R} \times \boldsymbol{A}) \cdot(\boldsymbol{R} \times \boldsymbol{B}) \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R}=\gamma^{2}(\boldsymbol{r} \times \boldsymbol{A}) \cdot(\boldsymbol{r} \times \boldsymbol{B})+\frac{1}{\lambda}(\boldsymbol{A} \cdot \boldsymbol{B}) \\
k \int R^{2}(\boldsymbol{A} \cdot \boldsymbol{R})(\boldsymbol{B} \cdot \boldsymbol{R}) \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R} \\
=\left(\frac{7}{2 \lambda}+\gamma^{2} r^{2}\right) \gamma^{2}(\boldsymbol{A} \cdot \boldsymbol{r})(\boldsymbol{B} \cdot \boldsymbol{r})+\left(\frac{5}{2 \lambda}+\gamma^{2} r^{2}\right) \frac{1}{2 \lambda}(\boldsymbol{A} \cdot \boldsymbol{B}) \\
k \int S_{12}\left(R^{2}\right) \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R}=\gamma^{2} S_{12}\left(r^{2}\right) \\
k \int(\boldsymbol{A} \cdot \boldsymbol{R}) S_{12}\left(R^{2}\right) \exp \left\{-\lambda(\boldsymbol{R}-\gamma \boldsymbol{r})^{2}\right\} \mathrm{d} \boldsymbol{R}=\left(\frac{7}{2 \lambda}+\gamma^{2} r^{2}\right) \gamma^{2} S_{12}, \text { etc. }
\end{gathered}
$$

where

$$
k=\left(\frac{\lambda}{\pi}\right)^{3 / 2}
$$

and

$$
\begin{aligned}
S_{12}(A \cdot \boldsymbol{B}) & =S_{12}(\boldsymbol{B}, \boldsymbol{A}) \\
& =3\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{A}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{B}\right)-\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)(\boldsymbol{A} \cdot \boldsymbol{B})
\end{aligned}
$$

Appendix 2

The nuclear interaction
The numerical values of ${ }^{\lambda} U_{k}^{v}$ and ${ }^{\lambda} \mu_{k}^{\nu}$ are given in table 2 below.

Table 2

λ	ν	U_{1}	μ_{1}	U_{2}	μ_{2}
Central	1	- 57.301	0.781	-227.752	3.091
	2	-19.519	1.047	-45.081	$2 \cdot 860$
	3	-150.433	0.961	-1331.301	$3 \cdot 569$
	4	-9.768	0.378	2171.754	$4 \cdot 094$
Spinorbit	1	8.720	$0 \cdot 956$	38.279	$3 \cdot 351$
	2	-220.659	1.826	-1926.808	$4 \cdot 712$
Tensor	1	-72.680	0.848	-2230.868	$3 \cdot 149$
	2	14.016	0.737	231.447	$2 \cdot 755$
Quadratic spinorbit	1	36.934	1.620	$673 \cdot 374$	4.909
	2	11.670	1.964	-2332.307	$9 \cdot 035$
	3	$5 \cdot 050$	1.387	-61.792	$4 \cdot 380$
	4	-129.299	2.032	-4459.021	$5 \cdot 751$

${ }^{2} U_{k}^{\gamma}$ are given in MeV and ${ }^{\lambda} \mu_{k}^{\nu}$ in fm^{-2}. Other constants used in this work are given below:

$$
\frac{M}{\hbar^{2}}=0.241 \times 10^{26} \mathrm{~cm}^{-2} \mathrm{MeV}^{-1}
$$

and

$$
e^{2}=1.445 \times 10^{-13} \mathrm{~cm} \mathrm{MeV}
$$

Appendix 3

The contributions of various interactions to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ which occur in the text are given below.

3.1 Kinetic energy

In the system of coordinates given by equation (3.8), it is easily shown that the operator

$$
\left(-\frac{\hbar^{2}}{2 M}\right) \sum_{i>j=2}^{5} \nabla_{j}^{2}=\left(-\frac{\hbar^{2}}{2 M}\right)\left(\frac{4}{3} \nabla^{2} \rho_{2}+\frac{3}{2} \nabla^{2} \rho_{3}+\frac{2}{1} \nabla^{2} \rho_{4}\right)
$$

where $\nabla^{2} \rho_{2}, \nabla^{2} \rho_{3}$ and $\nabla^{2} \rho_{4}$ act on the coordinates ρ_{2}, ρ_{3} and ρ_{4} respectively. Thus contribution of the KE to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is given by

$$
\begin{equation*}
E_{\mathrm{KE}}=-\left(\frac{\hbar^{2}}{2 M}\right) \int \Psi^{*}(-1)\left(\frac{4}{3} \nabla^{2} \rho_{2}+\frac{3}{2} \nabla^{2} \rho_{3}+\frac{2}{1} \nabla^{2} \rho_{4}\right) \Psi^{2}(-1) \mathrm{d} \tau_{-1} \tag{A3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{d} \boldsymbol{\tau}_{-1}=\mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} . \tag{A3.2}
\end{equation*}
$$

The wavefunction given by equation (3.1) is now substituted in the expression (A3.1) for the KE and on using the intregration formulae given in Appendix 1 and the transformation already defined in this paper the above integral is simply evaluated and the result is given by

$$
\begin{equation*}
E_{\mathrm{KE}}=\frac{1}{1+c^{2}} \frac{\hbar^{2}}{2 M}\left(18 \alpha+26 \beta c^{2}\right) \tag{A3.3}
\end{equation*}
$$

3.2. Coulomb force

The Coulomb force for the two protons is written in the following form:

$$
\begin{equation*}
E_{\text {Coul }}=e^{2} \int \Psi^{*}(-1) \frac{1}{r_{45}} \Psi(-1) \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} \tag{A3.4}
\end{equation*}
$$

This integral may be evaluated to give

$$
\begin{equation*}
E_{\mathrm{Coul}}=\frac{1}{1+c^{2}} \frac{2 e^{2}}{3}\left\{3\left(\frac{2 \alpha}{\pi}\right)^{1 / 2}+2 c^{2}\left(\frac{2 \beta}{\pi}\right)^{1 / 2}\right\} \tag{A3.5}
\end{equation*}
$$

3.3. Hard core

The total contribution of the hard core effect to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is given by

$$
\begin{align*}
I \equiv & -2 \alpha^{2} \frac{h^{2}}{M} \frac{N_{\mathrm{s}}^{2}}{1+c^{2}} \iiint\left(-\frac{\partial}{\partial \alpha}\right) \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \\
& \times \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4}+18 \alpha \frac{\hbar^{2}}{M} \frac{N_{\mathrm{s}}^{2}}{1+c^{2}} \iiint \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \\
& \times \mathrm{d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} . \tag{A3.6}
\end{align*}
$$

Limits of integration

The limits of integration are:

$$
\begin{align*}
& 0<\left|\rho_{2}\right| \leqslant r_{\mathrm{c}} \tag{i}\\
& 0<\left|\rho_{3}\right| \leqslant r_{\mathrm{c}} \tag{ii}\\
& 0<\left|\rho_{4}\right| \leqslant r_{\mathrm{c}} \tag{iii}\\
& \left|\rho_{2}-\frac{2}{3} \rho_{3}\right| \leqslant r_{\mathrm{c}} \tag{iv}\\
& \left|\rho_{2} \pm \frac{1}{2} \rho_{4}\right| \leqslant r_{\mathrm{c}} \tag{v}
\end{align*}
$$

and

$$
\begin{equation*}
\left|\rho_{2}+\frac{1}{3} \rho_{3} \pm \frac{1}{2} \rho_{4}\right| \leqslant r_{\mathrm{c}} . \tag{vi}
\end{equation*}
$$

For the angular part of the integration we have the following limits:

$$
\begin{align*}
& \cos \theta_{34} \leqslant \pm\left(r_{\mathrm{c}}{ }^{2}-\rho_{3}{ }^{2}-\rho_{4}{ }^{2}\right) /\left(\rho_{3} \rho_{4}\right) \tag{vii}\\
& \cos \theta_{23} \leqslant-\left(r_{\mathrm{c}}{ }^{2}-\rho_{2}{ }^{2}-\frac{4}{9} \rho_{3}{ }^{2}\right) /\left(\frac{4}{3} \rho_{2} \rho_{3}\right) \tag{viii}
\end{align*}
$$

and
(ix) $\quad \cos \theta_{23} \leqslant\left(r_{\mathrm{c}}{ }^{2}-\rho_{2}{ }^{2}-\frac{1}{8} \rho_{3}{ }^{2}-\frac{1}{4} \rho_{4}{ }^{2}\right) /\left(\frac{2}{3} \rho_{2} \rho_{3}\right)$.

The integration with respect to ρ_{4} is performed over a solid angle.
Equation (A3.6) can now be written as

$$
\begin{align*}
I= & -2 \alpha^{2} \frac{\hbar^{2}}{M} \frac{N_{\mathrm{s}}^{2}}{1+c^{2}} 16 \pi^{3}\left(-\frac{\partial}{\partial \alpha}\right) \int_{x_{1}}^{x_{2}} \sin \theta_{23} \mathrm{~d} \theta_{23} \int_{x_{3}}^{x_{4}} \sin \theta_{34} \mathrm{~d} \theta_{34} \\
& \times \int_{0}^{r_{0}} \int_{0}^{r_{0}} \int_{0}^{r_{0}} \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \rho_{2}{ }^{2} \rho_{3}{ }^{2} \rho_{4}{ }^{2} \mathrm{~d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} \\
& +18 \alpha \frac{\hbar^{2}}{2 M} \frac{N_{\mathrm{s}}{ }^{2}}{1+c^{2}} 16 \pi^{3} \int_{x_{1}}^{x_{2}} \sin \theta_{23} \mathrm{~d} \theta_{23} \int_{x_{3}}^{x_{4}} \sin \theta_{34} \mathrm{~d} \theta_{34} \\
& \times \int_{0}^{r_{0}} \int_{0}^{r_{0}} \int_{0}^{r_{\mathrm{c}}} \exp \left\{-\alpha\left(3 \rho_{2}^{2}+\frac{8}{3} \rho_{3}^{2}+2 \rho_{4}^{2}\right)\right\} \rho_{2}^{2} \rho_{3}^{2} \rho_{4}^{2} \mathrm{~d} \rho_{2} \mathrm{~d} \rho_{3} \mathrm{~d} \rho_{4} \tag{A3.9}
\end{align*}
$$

where

$$
\begin{align*}
& x_{1} \equiv \cos \theta_{23}=\frac{-3}{4 \rho_{2} \rho_{3}}\left(r_{\mathrm{c}}{ }^{2}-\rho_{2}^{2}-\frac{4}{9} \rho_{3}{ }^{2}\right) \\
& x_{2} \equiv \cos \theta_{23}=\frac{3}{2 \rho_{2} \rho_{3}}\left(r_{\mathrm{c}}{ }^{2}-{\rho_{2}}^{2}-\frac{1}{9} \rho_{3}{ }^{2}-\frac{1}{4} \rho_{4}{ }^{2}\right) \\
& x_{3} \equiv \cos \theta_{34}=-\frac{1}{\rho_{3} \rho_{4}}\left(r_{\mathrm{c}}{ }^{2}-\rho_{3}{ }^{2}-\rho_{4}{ }^{2}\right) \\
& x_{4} \equiv \cos \theta_{34}=\frac{1}{\rho_{3} \rho_{4}}\left(r_{\mathrm{c}}{ }^{2}-\rho_{3}{ }^{2}-\rho_{4}^{2}\right) . \tag{A3.10}
\end{align*}
$$

It can be shown that equation (A3.9) leads to

$$
\begin{align*}
I= & \left(\frac{\alpha}{\pi}\right)^{3 / 2} r_{\mathrm{c}} \frac{\hbar^{2}}{M}\left(5+\alpha \frac{\partial}{\partial \alpha}\right)\left[\left\{\left(1-\exp \left(-2 \alpha r_{\mathrm{c}}^{2}\right)\right)\left(1-\exp \left(-3 \alpha r_{\mathrm{c}}^{2}\right)\right)\left(409-96 \alpha r_{\mathrm{c}}^{2}\right)\right.\right. \\
& +24 \alpha r_{\mathrm{c}}^{2}\left[8\left\{2 \alpha r_{\mathrm{c}}^{2}-\left(1-\exp \left(-3 \alpha r_{\mathrm{c}}^{2}\right)\right)\right\}-11\right]+8 \alpha r_{\mathrm{c}}^{2}\left(5+28 \exp \left(-3 \alpha r_{\mathrm{c}}^{2}\right)\right) \\
& \left.\times \exp \left(-2 \alpha r_{\mathrm{c}}^{2}\right)\right\} \frac{1}{\sqrt{ } t} \int_{0}^{\gamma t} \exp \left(-x^{2}\right) \mathrm{d} x+\left\{(1 - \operatorname { e x p } (- 2 \alpha r _ { \mathrm { c } } ^ { 2 }) \} \left\{\left[\left(112 \alpha r_{\mathrm{c}}^{2}-313\right)\right.\right.\right. \\
& \left.\left.\times\left\{1-\exp \left(-3 \alpha r_{\mathrm{c}}^{2}\right)\right\}+72 \alpha{r_{\mathrm{c}}^{2}}^{2}\right]+224 \alpha r_{\mathrm{c}}^{2}\left\{1-\exp \left(-3 \alpha{r_{\mathrm{c}}}^{2}\right)\right\} \exp \left(-2 \alpha{r_{\mathrm{c}}^{2}}^{2}\right)\right\} \\
& \times \exp (-t)] \tag{A.311}
\end{align*}
$$

where

$$
\begin{equation*}
t=\frac{8}{3} \alpha r_{\mathrm{c}}{ }^{2} . \tag{A3.12}
\end{equation*}
$$

3.4. Central force

The contribution of the central force to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is given by
where

$$
\sum_{\mathrm{spin}}^{\sigma}(-1) \int \mathrm{d} \tau_{-1} \chi^{*}(-1) \Psi^{* *}(-1)\left(\sum(2345) V_{i j}\right) \chi(-1) \Psi(-1)
$$

$$
V_{i j}=\sum_{v=1}^{4}\left(w+m_{v} M_{i j}+b_{v} B_{i j}+h_{v} H_{i j}\right)^{\mathrm{c}} V_{k}^{v}(i j)
$$

On substituting $\Psi(-1)$ and carrying out the spin summations and then integrating over complete vectors, we arrive at the following results:

$$
\begin{aligned}
E_{\mathrm{C}}= & \sum_{k=1}^{2} \sum_{v=1}^{4} \frac{{ }^{\mathrm{C}} U_{k}^{v}}{1+c^{2}}\left[6(w+m)_{v}\left(\frac{2 \alpha}{2 \alpha+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{3 / 2}\right. \\
& +c^{2}\left\{\frac{5}{2}(w+m+b+h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{3 / 2}\right. \\
& \left.\left.+3(w-m+b-h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{5 / 2}+\frac{1}{2}(w+m+b+h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{C}} \mu_{k}^{v}}\right)^{5 / 2}\right\}\right]
\end{aligned}
$$

3.5. Linear spin-orbit force

The spin-orbit force gives no contribution in both the S-S and the S-D states to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$. Only the $\mathrm{D}-\mathrm{D}$ state contributes to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ and this only is considered in the present section.

$$
E_{\mathrm{LS}}=\int\left\langle\Psi_{\mathrm{D}}^{*}\right| V_{\mathrm{LS}}\left|\Psi_{\mathrm{D}}^{\prime}\right\rangle \mathrm{d} \tau_{-1}
$$

where

$$
V_{\mathrm{LS}}=L . S\left(w+m M_{i j}\right)_{v}{ }^{\mathrm{LS}} V_{k}^{\nu}(i j)
$$

and ${ }^{\mathrm{LS}} V_{k}^{v}(i j)$ has already been defined in this paper.

$$
L_{i} \cdot \boldsymbol{S}_{i j}=\frac{\hbar}{2}\left(\boldsymbol{\sigma}_{i}+\sigma_{j}\right) \cdot\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right) \times\left(\boldsymbol{p}_{i}-\boldsymbol{p}_{j}\right) \quad \text { and } \quad \boldsymbol{p}_{i}=-\mathrm{i} \hbar \frac{\partial}{\partial \boldsymbol{r}_{i}}
$$

The final result of the contribution of the linear spin-orbit force to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ is given by
$E_{\mathrm{LS}}=-\frac{3 c^{2} \hbar^{2}}{1+c^{2}} \sum_{k=1}^{2} \sum_{v=3}^{4}{ }^{\mathrm{LS}} U_{k}^{v}\left\{3(w-m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LS}} \mu_{k}^{v}}\right)^{5 / 2}+(w+m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LS}} \mu_{k}^{v}}\right)^{7 / 2}\right\}$.

3.6. The tensor force

The tensor force contributes to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ both in the $\mathrm{S}-\mathrm{D}$ and the $\mathrm{D}-\mathrm{D}$ states. We shall first of all consider the contribution from the S-D state.
(i) S-D state. The total contribution from the S-D and D-S state is given by

$$
8 \sum_{v=3}^{4}(w+m)_{v} \int\left\langle\Psi_{\mathrm{S}}^{*}\right| \mathrm{S}_{24}^{\mathrm{T}} V_{k(24)}^{v}\left|\Psi_{\mathrm{D}}\right\rangle \mathrm{d} \boldsymbol{\tau}_{-1}
$$

where
and

$$
\delta=(\alpha+\beta) / 2
$$

Thus the above integral leads to
$-6 \sqrt{ } 5 \frac{c}{1+c^{2}}\left(\frac{2 \alpha}{\alpha+\beta}\right)\left(\frac{2 \beta}{\alpha+\beta}\right)^{2} \sum_{k=1}^{2} \sum_{v=3}^{4}(w+m)_{v}{ }^{T} U_{k}^{v}\left(\frac{2(\alpha \beta)^{1 / 2}}{\alpha+\beta+{ }^{T} \mu_{k}^{v}}\right)^{5 / 2} \frac{1}{\alpha+\beta+{ }^{T} \mu_{k}^{v}}$.
Note that we have no contribution from S_{23} and S_{45}. This is because each contains σ_{2} or σ_{4} only once and the expectation value of $\boldsymbol{\sigma}_{2}$ or $\boldsymbol{\sigma}_{4}$ between two similar spin functions is zero.
(ii) D-D state. We now consider the contribution of the $\mathrm{D}-\mathrm{D}$ state to $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$. This is given by the following expression:

$$
\begin{aligned}
\int\left\langle\left.\Psi_{\mathrm{D}}^{*}\right|^{\mathrm{T}}\right. & V_{k}^{v} \mathrm{~S}_{i j}\left(w+m M_{i j}\right)_{v}\left|\Psi_{\mathrm{D}}\right\rangle \mathrm{d} \tau_{-1} \\
= & 2 \int\left\langle\left.\Psi_{\mathrm{D}}{ }^{*}\right|^{\mathrm{T}} V_{k}^{v} \mathrm{~S}_{23}\left(w+m M_{23}\right)_{v} \mid \Psi_{\mathrm{D}}\right\rangle \mathrm{d} \tau_{-1} \\
& +4 \int\left\langle\left.\Psi_{\mathrm{D}}{ }^{*}\right|^{\mathrm{T}} V_{k}^{v} \mathrm{~S}_{34}\left(w+m M_{34}\right)_{v} \mid \Psi_{\mathrm{D}}\right\rangle \mathrm{d} \tau_{-1} \\
= & -\frac{c^{2}}{1+c^{2}} \sum_{k=1}^{2} \sum_{v=3}^{4} \mathrm{~T}_{k}^{v} U_{k}^{v} \frac{1}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}} \\
& \times\left\{\frac{21}{2}(w-m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}}\right)^{5 / 2}+\frac{7}{2}(w+m)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{T}} \mu_{k}^{v}}\right)^{7 / 2}\right\} .
\end{aligned}
$$

3.7. Quadratic spin-orbit force

The $\mathrm{S}-\mathrm{S}$ and the $\mathrm{S}-\mathrm{D}$ contributions of the quadratic spin-orbit force to the $\mathrm{BE}\left({ }^{4} \mathrm{He}\right)$ can easily be shown to vanish. Thus, only the $\mathrm{D}-\mathrm{D}$ terms contribute. Consider the following integral:

$$
\int\left\langle\left.\Psi_{\mathrm{D}}^{+}\right|^{*}\right| \mathrm{LL} V_{k}^{v} Q_{\mathrm{LL}}(i j)\left(w+m M_{i j}+b B_{i j}+h H_{i j}\right)_{v}\left|\Psi_{\mathrm{D}}^{+}\right\rangle \mathrm{d} \tau_{-1}
$$

where $Q_{\text {LI }}$ has already been defined in this paper. The above integral is easily evaluated by making use of Appendix 1 and the final result is given by:

$$
\begin{aligned}
\frac{2}{3} \frac{c^{2}}{1+c^{2}} \hbar^{2} \sum_{k=1}^{2} \sum_{v=1}^{4}{ }^{\mathrm{LL}} U_{k}^{v}\{ & 2(w-m+b-h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LL}} \mu_{k}^{v}}\right)^{5 / 2} \\
& \left.-9(w+m+b+h)_{v}\left(\frac{2 \beta}{2 \beta+{ }^{\mathrm{LL}} \mu_{k}^{v}}\right)^{7 / 2}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle\Psi_{\mathrm{S}}^{*} *\right| \mathrm{S}_{24}^{\mathrm{T}} V_{k(24)}^{v}\left|\Psi_{\mathrm{D}}\right\rangle=\frac{c N_{\mathrm{S}} N_{\mathrm{D}}}{1+c^{2}}\left\{18\left(\boldsymbol{r}_{23} \cdot \boldsymbol{r}_{24}\right)\left(\boldsymbol{r}_{24} \cdot \boldsymbol{r}_{45}\right)-6 r_{24}{ }^{2}\left(\boldsymbol{r}_{23} \cdot \boldsymbol{r}_{45}\right)\right\} \\
& \times \exp \left\{-\lambda\left(\boldsymbol{\rho}_{2}-\xi \boldsymbol{r}\right)^{2}-\omega\left(\boldsymbol{\rho}_{3}-\epsilon \boldsymbol{\rho}_{4}\right)^{2}-\eta \rho_{4}{ }^{2}\right\} \\
& \lambda=3 \delta+{ }^{T} \mu_{k}^{\nu} \quad \xi=\frac{\mathrm{T} \mu_{k}^{\nu}}{3\left(3 \delta+{ }^{\mathrm{T}} \mu_{k}^{\nu}\right)} \quad \boldsymbol{r}=\frac{3}{2} \rho_{4}-\rho_{3} \\
& \omega=\frac{\delta\left(8 \delta+3^{\mathrm{T}} \mu_{k}^{\nu}\right)}{3 \delta+{ }^{\mathrm{T}} \mu_{k}^{v}} \quad \epsilon=\frac{\mathrm{T}_{k}^{\nu}}{2\left(8 \delta+3^{\mathrm{T}} \mu_{k}^{\nu}\right)} \quad \eta=\frac{8 \delta\left(2 \delta+{ }^{\mathrm{T}} \mu_{k}^{v}\right)}{8 \delta+3^{\mathrm{T}} \mu_{k}^{\nu}}
\end{aligned}
$$

References

Abraham, G., Cohen, L., and Roberts, A. S., 1955, Proc. Phys. Soc. A, 68, 265-84. Blatt, J. M., and Derrick, G., 1958, Nucl. Phys., 8, 602-6.
Brueckner, K. A., 1958, The Many Body Problem (London: Methuen).
Clark, A. C., 1954, Proc. Phys. Soc. A, 67, 323-30.
Hamada, T., and Johnston, I. D., 1962, Nucl. Phys., 34, 382-403.
Hoor, R., and Jeeves, T. A., 1961, J. Ass. Computing Mach., 8, 212-30.
Irvine, J. M., 1967, Nucl. Phys., A98, 161-76.

- 1968, Nucl. Phys., A120, 576-92; Rep. Prog. Phys., 31, 1-59.

Irving, J., 1951, Phil. Mag., 42, 338-50.

- 1952, Phys. Rev., 87, 519-20.
- 1953, Proc. Phys. Soc. A, 66, 17-27.

Kanada, H., Nagata, S., Otsuki, S., and Sumi, Y., 1963, Prog. theor. Phys., 30, 475-93.
Kaupe, A. F., Jr., 1963, Comm. Ass. Computing Mach., 6, 313-4.
Kikuta, T., Morita, M., and Yamada, M., 1956, Prog. theor. Phys., 15, 222-36.
Nagata, S., Sasakawa, T., Sawada, T., and Tamagaki, R., 1959, Prog. theor. phys., 22, 274-98.
Okubo,S., and Marshak, R. E., 1958, Ann. Phys. 4, 166-79.
Omojola, D. A. F., 1968, PhD Thesis, London.

- 1970, J. Phys. A: Gen. Phys. 3, 630-52.

Rosenfeld, L., 1948, Nuclear Forces (Amsterdam: North-Holland).
Sugie, A., Hodgson, P. E., and Robertson, H. H., 1957, Proc. Phys. Soc. A, 70, 1-16.
Wong, C. W., 1967, Nucl. Phys., A104, 417-58.

